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Parametric decays of a circularly polarized electromagnetic wave
in an electron-positron magnetized plasma

V. Muñoz and L. Gomberoff
Department of Physics, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

~Received 30 June 1997!

We study the parametric decays of an electromagnetic wave propagating along an external magnetic field in
an electron-positron plasma. We include weakly relativistic effects on the particle motions in the wave field
and the nonlinear ponderomotive force. We show that there are a number of resonant and nonresonant wave
couplings. These include ordinary decay instabilities, in which the pump wave decays into an electroacoustic
mode and a sideband wave. There are also nonresonant couplings involving two sideband waves and a
nonresonant modulational instability in which the pump wave decays into two sideband modes. Depending on
the parameters involved, there is a resonant modulational instability involving a forward-propagating electroa-
coustic mode and a sideband daughter wave.@S1063-651X~98!04101-4#

PACS number~s!: 82.40.Ra, 51.60.1a
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I. INTRODUCTION

The nonlinear behavior of an electromagnetic wa
propagating along an external magnetic field in an electr
positron plasma has been studied by several authors~see,
e.g., @1#!. However, most of the effort has been devoted
the study of the possible self-modulation of the waves. T
reason lies in the observational fact that radiation emit
from pulsar magnetospheres shows short intensity variat
@2–5#. To account for these micropulses, Chian and Ken
@6# proposed a self-modulational instability of the electr
magnetic waves. To this end, these authors considered a
linear Schro¨dinger equation whose coefficients were sho
to be incorrect@7#. The reason for this is that Chian an
Kennel @6# omitted two sources for nonlinearity, namel
harmonic generation and the ponderomotive effects. Ka
and Kaup@7#, by using a multiple time-space scale perturb
tion theory, solved the problem consistently. They show
that in a nonmagnetized electron-positron cold plasma,
system is modulationally stable for both linear and circu
polarization. When thermal effects are included, the sys
becomes modulationally unstable in a very narrow freque
region. It has been recently shown that in the ultrarelativis
case the wave can be self-modulated due to relativistic t
peratures and phonon damping@8#.

Parametric decay of an electromagnetic wave propaga
in an unmagnetized plasma has been studied by Gangad
et al. @9#. There, the authors studied only the modulatio
instability. However, it was recently shown that the tre
ment of Ref. @9# has several deficiencies. A full study o
parametric decays of linearly polarized waves in an electr
positron plasma is given in Ref.@10#.

In the case when the plasma is strongly magnetized, K
and Kaup@11# showed that the plasma is unstable for fr
quencies belowvp/2, wherevp

254pn0e2/m is the electron
~positron! plasma frequency. Note that the actual plasma
quency of the system is& times the electron plasma fre
quency. Recently, fully relativistic thermal effects have be
considered, and it has been shown that, in the ultrarelativ
limit, the system is modulationally unstable forv,Ahvp ,
whereh is the ratio between the rest energy density and
enthalpy of the system@12#.
571063-651X/98/57~1!/994~11!/$15.00
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Here we study the general structure of parametric ins
bilities of a large amplitude electromagnetic wave propag
ing along an external magnetic field. We include weak
relativistic effects on the particle motions in the wave fie
the ponderomotive force, and nonrelativistic thermal effec
Note that in the case of a circularly polarized wave, which
the case in a magnetized plasma, there is no harmonic
eration@7,11#.

Thus, in Sec. II, we describe the model. In Sec. III, w
derive the nonlinear dispersion relation. In Sec. IV, we stu
numerically the dispersion relation. In Sec. V, the results
summarized and discussed.

II. MODEL

We assume that the electron-positron plasma is descr
by the following set of equations:

]nl

]t
52¹W •~nlvW l !, ~1!
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57 995PARAMETRIC DECAYS OF A CIRCULARLY POLARIZED . . .
wherenl is the density of each fluid,vW l is the bulk velocity
of each fluid,EW and BW are the electric and magnetic field
respectively,K is the Boltzmann constant,JW is the total cur-
rent,g is the adiabatic coefficient,T is the common tempera
ture,m is the particle mass, andc is the speed of light.

We assume that a circularly polarized electromagn
pump wave propagates along thez axis, as well as the exis
tence of a constant magnetic field in the same direction
that the total zeroth-order electric and magnetic fields
given by

BW 05B@ x̂ cos~k0z2v0t !1 ŷ sin~k0z2v0t !#1B0zẑ, ~9!

EW 05E@ x̂ sin~k0z2v0t !2 ŷ cos~k0z2v0t !#, ~10!

B5
ck0

v0
E. ~11!

Adopting the notation for transverse magnitudes

A'05A0x1 iA0y5Aei ~k0z2v0t !, A real, ~12!

we find that this wave induces a particle transversal velo
given by

v51
qB

mck0
hS 12

a2

2
h3D , ~13!

a5
uqu

mc2k0
B, ~14!

h5
v0

v02vc
, ~15!

vc5
qB

mc
. ~16!

In order to obtain the zeroth-order approximation, w
have assumed that there is an electromagnetic wave o
form exp@i(k0z2v0t)#. Then the dispersion relation of th
electromagnetic wave, including weakly relativistic effec
is given by

v0
25c2k0

21vp
2(

j
h j S 12

a2

2
h j

3D , ~17!

where vp is the electron plasma frequency,j 5e for elec-
trons andj 5p for positrons.

Note that the small parameter isa. So sincev is propor-
tional toa @see definition~13!#, the theory is weakly relativ-
istic and the factorG can be expanded arounda2.

In Fig. 1~a!, we show the dispersion relation of the pum
wave including weakly relativistic effects on the particle m
tion in the wave field of the pump, Eq.~17!. We have chosen
vp /vc50.5 anda50.01. The first quadrant corresponds
right-hand polarized waves propagating in the direction
the external magnetic field. The right-hand polarized wa
are supported by the positrons and have a resonance a
positron gyrofrequency,v05vc . The second quadrant co
responds to right-hand polarized waves moving in the op
site direction of the external magnetic field. These waves
supported by the electrons and have a resonance at the
tron gyrofrequency,v052vc . The third quadrant corre
sponds to left-hand polarized waves, moving in the direct
ic
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of the magnetic field. These waves are supported by the e
trons and the branch has a resonance at the electron gyr
quency. The fourth quadrant corresponds to left-hand po
ized waves, moving in the opposite direction to the exter
magnetic field and supported by the positrons.

As the pump wave intensity increases, there is an in
bility for frequencies starting at a cutoff frequencyv0.vc
andk050. This is illustrated in Fig. 1~b! for a50.05.

Assuming that the system consists now of electrons, p
itrons, and a circularly polarized electromagnetic wave sa
fying Eq. ~17!—the pump wave—we perturb the syste
again with a perturbation of the form exp@i(kz2vt)#. We find
the set of equations

]

]t Fdv'S 11
v'0v'0*

c2 D 1dv'
*

v'0
2

2c2G
1dvz

]

]z Fv'0S 11
1

2

v'0v'0*

c2 D G
5

q

m FdE'1
i

c
~dvzB'02dv'B0z!G , ~18!

FIG. 1. Dispersion relation of the pump wave, Eq.~17!. Nor-
malized wave numbery5k0c/vc vs normalized frequencyx
5v0 /vc for vp /vc50.5. ~a! a50.01. ~b! a50.05.
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FIG. 2. Nonlinear dispersion relation, Eq.~32!. Normalized wave numbery5kc/vc vs frequencyx5v/vc for vp /vc51 andvs /c
50.1. ~a! a50. ~b! a50.1. ~c! a50.2. ~d! a50.2, showing the details of the coupling (e1 ,D2).
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]z2D dB'5 i
4pe

c

]

]z
@n0~dvp'2dve'!

1dnpvp'02dneve'0#. ~21!

Longitudinal and transversal perturbations are of the form

dAz5Re@Ãei ~kz2vt !# ~22!

and

dA'5a1ei ~k1z2v1t !1a2ei ~k2z2v2t !, ~23!
respectively, withk65k06k andv65v06v. From Fara-
day’s law~4! and the continuity equation~1!, it follows that

e652 i
v6

c

b6

k6
, ~24!

ñ5n0

kṽ
v

. ~25!

From the condition of charge quasineutrality,

dnp5dne ,

and Eq.~25! it follows that

ṽp5 ṽe . ~26!

Using Eqs.~12! ~13!, and ~22!–~26!, in Eqs. ~18!–~21!,
we obtain

@v1~11a2h2!2vc#v11Fv1
1

2
a2h2Gv2*

2F1

2

qB

mc

vc

v0
hS 12

1

2
a2h3D G ṽ5

q

mc
v1

b1

k1
,

~27!



57 997PARAMETRIC DECAYS OF A CIRCULARLY POLARIZED . . .
FIG. 3. Nonlinear dispersion relation, Eq.~32!. Normalized wave numbery5kc/vc vs frequencyx5v/vc for vp /vc510 andvs /c
50.01. ~a! a50. ~b! a50.01. ~c! a50.02. ~d! Enlargement of the origin fora50.03.
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III. NONLINEAR DISPERSION RELATION

Upon elimination of all quantities (ṽ,v6 ,b6) from Eqs.
~27!–~31!, we obtain the following nonlinear dispersion r
lation:

05F11F222F21F12 , ~32!

whereF16 andF26 are defined in the Appendix.
Whena50, Eq. ~32! reduces to

05SpSeD1D2 , ~33!

where

Sp5Se5v22vs
2k2, ~34!
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FIG. 4. Same as Fig. 3, forvp /vc510 andvs /c50.057.~a! a50. ~b! The crossing (S1 ,e2) for a50. ~c! The same crossing fora
50.001.~d! Enlargement of the origin fora50. ~e! Same as~d! for a50.01.
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D65c2k6
2 2v6

2 1vp
2S v6

v62vpc
1

v6

v62vec
D . ~35!

The solutionsD650 andSp5Se50 correspond to the elec
tromagnetic waves and the electroacoustic modes, res
 ec-

tively. There are four electroacoustic modes, two propag
ing in the direction of the electromagnetic wave and t
other in the opposite direction. WhenaÞ0, the modes are
coupled. A necessary condition for wave coupling is that
resonance conditions must be satisfied, namely,nv05v1
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FIG. 5. Same as Fig. 4, showing in details the crossings involvingp2 . ~a! a50. ~b! a50.005.~c! a50.01.
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1v2 with n51,2,3, . . . , wherev1 andv2 are the frequen-
cies of the daughter waves@13#.

For the case of an unmagnetized plasma~B0z50, h51,
vc50!, Eq. ~32! reduces to

S@D1D22~D11D2!vp
2a2#52vp

2a2c2k2~12a2!

3~D11D2!, ~36!

which corresponds to the dispersion relation of circularly p
larized electromagnetic waves in an unmagnetized elect
positron plasma@14#.

In the next section we solve numerically the nonline
dispersion relation for various regions in parameter space
using a method first derived by Longtin and Sonnerup@15#
~see also@16–19#!.

IV. NUMERICAL ANALYSIS OF THE DISPERSION
RELATION

We now solve Eq.~32! numerically. To this end, we
choose a value of the pump wave frequency,v050.5, and
from Eq.~17! we determine the corresponding wave numb
y0 for a50. In Fig. 2~a!, we show the solutions of Eq.~32!
for vp /vc51, vs /c50.1, anda50. With these values,y0
-
n-

r
y

r

50.9574. It is enough to consider the upper half of the (x,y)
plane, since the lower half plane is symmetric to reflectio
through the origin. There are eight lines in the figure cor
sponding to the eight real solutions ofD650. Four of these
lines are parabolic and exhibit no resonance. They are
beled asD6 in Fig. 2~a!. The linesp6 also correspond to
solutions ofD6 , but they resonate at the proton gyrofr
quency v65vc ; similarly, e6 is the branch ofD650
which resonates at the electron gyrofrequencyv652vc .
There are also four other lines corresponding to the elec
acoustic modes present in the system. These are straight
passing through the origin and symmetric with respect to
y axis @see Eq.~A15! in the Appendix#. In the case when
a50 there are only two such lines because we have assu
equal electron and positron temperatures. However, in
presence of the pump wave, the acoustic modes assoc
with the electrons and protons separate from each other,
ing rise to four lines, two corresponding to acoustic mod
propagating in the direction of the pump wave@in Fig. 2~a!
they are labeled byS1 and they overlap# and the other two
propagating in the opposite direction~labeled byS2!. From
Fig. 2~a!, it follows that there are a number of crossin
between the solutions of Eq.~32!. Some of these crossing
can give rise to wave coupling when the pump wave
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FIG. 6. Same as Fig. 5~a!. ~a! vs /c50.025 anda50. ~b! Same as~a!, a50.01. ~c! vs /c50.03 anda50. ~d! Same as~c!, but for a
50.01. ~e! Same as~d!, but for vs /c50.037.~f! Same as~d!, but for vs /c50.038.
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switched on. Only crossings between modes satisfying
ergy conservation can lead to wave coupling. This is a n
essary but not a sufficient condition. The crossings leadin
wave couplings are labeled from~1! to ~5! in Fig. 2~a!. Fig-
ure 2~a! does not show all the crossings in the upper half
the (x,y) plane. There are two additional crossings, abo
the displayed portion of the figure, between (S2 ,e1) and
n-
c-
to

f
e

(S1 ,e2), but they do not give rise to wave coupling. In Fi
2~b!, we have switched on the pump wave by settinga
50.1. We see that some crossings are now gaps. This m
that at these crossings we have instabilities, indicati
thereby, wave coupling. From Fig. 2~b!, it follows that there
are several possible couplings. Starting from the top, ther
one corresponding to the crossing of an electroacoustic m
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propagating forward (S1) and the solution ofD250, which
has a resonance atv25vc(p2). We see that the two elec
troacoustic modes not only separate from each other w
aÞ0, but also only one of them couples top2 . This behav-
ior will be found again later. The crossing with the electro
coustic mode gives rise to an ordinary decay instability,
which the pump wave decays into a forward-propagat
electroacoustic mode of frequencyv and a sideband wave o
frequencyv2 . The crossing between (p1 ,p2) is a nonreso-
nant coupling in which the pump wave decays into two si
band waves@20#. There is then another nonresonant coupl
between two solutions ofD250 (e2 ,p2), which is more
clearly seen in Fig. 2~c! when a50.2. Finally, in Fig. 2~b!
there is a crossing at the origin between (p1 ,e2). This
crossing gives rise to a gap starting at the origin and co
sponds to a nonresonant modulational instability. Figure 2~d!
shows the only other coupling for this set of parameters
the crossing (e1 ,D2).

In Fig. 3~a! we study the case whenvp /vc510, a50,
andvs /c50.01. The parabolic branchesD6 are more sepa
rated from each other than they are forvp51, and, therefore,
the crossings between (e1 ,D2) have disappeared. Th
crossing between (D1 ,D2), shown in Fig. 2~a!, is still
present, but as in the previous case, it does not lead to
pling. Therefore, the linesD6 are irrelevant, and we concen
trate on the other six lines, as shown in Fig. 3~a!. The cross-
ings that lead to wave coupling are labeled from~1! to ~4!;
they are the same as in the previous case@vp51, Fig. 2~a!#.
In Fig. 3~b!, the pump wave has been increased toa
50.01. One of the sounds propagating forward has coup
to p2 to give rise to a decay process. This is an ordin
decay instability where the pump wave decays into
forward-propagating sound and a sideband wave. This co
sponds to the first gap from the top. There is another g
between (p1 ,p2). This is a nonresonant coupling in whic
the pump wave decays into two sideband waves. Ther
another gap at the origin between (p1 ,e2). This coupling
corresponds to a modulational nonresonant instability. M
ing to the right, there is another nonresonant instability,
volving (e2 ,p2) @see Fig. 3~c!#. In Fig. 3~d! we have am-
plified the origin in order to show the modulation
instability. Figures 3~b! and 3~c! are equivalent to Figs. 2~b!
and 2~c!, but vp has been increased by one order of mag
tude anda has been decreased by one order of magnitu
Thus we observe that lower values ofa are needed to desta
bilize the system for higher values ofvp .

Next, we increase the sound velocity tovs /c50.057. For
zero pump wave amplitude, the solutions of Eq.~32! are
shown in Fig. 4~a!. The crossings (S1 ,p1) and (S2 ,p2)
have disappeared, and a new crossing (S1 ,e2) is present.
There are five couplings in this case, as indicated in
figure.@Actually, the crossing (S1 ,p2) will not lead to cou-
pling unlessvs is slightly less; we shall examine this later#
In Figs. 4~b! (a50) and 4~c! (a50.001), we see the cross
ing and then the coupling between (S1 ,e2), respectively.
As in all previous decay processes, only one of the elect
coustic modes participates in the coupling. In Figs. 4~d! and
4~e! we show the crossing and the gap at the origin, resp
tively. Now S1 is the rightmost line in the figure and th
modulational instability is resonant, involving an electr
acoustic mode ande2 . We have observed this same beha
en
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ior for other sets of parameters: Whenvs is so low thatS1

is to the left ofp1 and e2 , the modulational instability is
nonresonant; whenvs is so high thatS1 is to the right ofp1

and e2 , the modulational instability is resonant. Next,
Figs. 5~a!–5~c!, we show the other two possible gaps, b
tween (p1 ,p2) and (e2 ,p2). Figure 5~a! shows the rel-
evant zone fora50. In Fig. 5~b!, a50.005, and the gap
between (e2 ,p2) has developed, while the crossin
(S1 ,p2) does not develop a gap. In Fig. 5~c!, a50.01 and
the gap (p1 ,p2) is now also visible.

Figures 6~a!–6~f! detail the evolution of the crossin
(S1 ,p2). We have already shown in Fig. 3~b! that it leads to
coupling between one electroacoustic mode andp2 , when
vs /c50.01. In Fig. 6~a!, vs has been increased, but th
crossing (S1 ,p2) is still to the left of the crossing (p1 ,p2).
WhenaÞ0, Fig. 6~b!, a gap still develops, but now the tw
electroacoustic modes are involved. In Fig. 6~c!, vs is further
increased and the crossing (S1 ,p2) is to the right of the
crossing (p1 ,p2). Whena50.01, Fig. 6~d!, a gap develops
with both electroacoustic modes involved. Finally, Figs. 6~e!
and 6~f! show this gap just before closing (vs /c50.037) and
immediately after closing (vs /c50.038). It remains closed
for higher values ofvs . The crossing (S1 ,p2) has always

FIG. 7. Same as Fig. 3, but forvp /vc510 andvs /c50.1. ~a!
a50. ~b! a50.08.
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FIG. 8. Same as Fig. 3, forvp /vc50.1 andvs /c50.1. ~a! a50. ~b! a50.2. ~c! a50.3. ~d! Enlargement of the regionx.0.5 andy
.0.5 of ~c!.
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shown a similar behavior for the various sets of parame
we analyzed. The transition between a gap and an avoi
crossing always occurs when this crossing is in between
crossings (p1 ,p2) and (e2 ,p2).

Now we increase the sound velocity tovs /c50.1. Figure
7~a! corresponds toa50. We notice that the crossing
(S1 ,e2) no longer exist and only three couplings are po
sible. These are shown in Fig. 7~b! for a50.08. From Fig.
7~b! it follows that there are two nonresonant couplin
(p1 ,p2) and (e2 ,p2) and a resonant modulational instab
ity between (S1 ,e2) at the origin.

In Fig. 8~a! we have reduced the plasma frequency
vp /vc50.1. The other parameters arevs /c50.1 and a
50. When vp decreases, the parabolic branchesD6 get
closer, and therefore the crossings are the same as in
2~a!, plus a new crossing, between (D1 ,p2). In Fig. 8~a! we
have selected a region where all the crossings leadin
wave coupling are present. The couplings are those expe
namely, an ordinary decay instability between (S1 ,p2),
Fig. 8~b!, a nonresonant modulational instability involvin
(e2 ,p1), Fig. 8~c!, and a nonresonant coupling betwe
(e2 ,p2), Fig. 8~d!. The only new feature is the absence o
gap at the crossing (p1 ,p2). For all the values ofvp we
have studied, this crossing always leads to a coupling ifvs is
rs
ng
e

-

ig.

to
ed,

low enough. This is the case forvp /vc51 and vp /vc
510, where it develops a gap forvs /c<0.48 andvs /c
<0.42, respectively.

We point out that we have also examined the intermed
casesvp /vc52 and vp /vc50.5. In the first casevp /vc
52, the threshold occurs forvs /c.0.47, and in the second
casevp /vc50.5, it occurs forvs /c.0.53. However, for
vp /vc50.1, there is never a gap at this crossing, even
vs /c values as small as 1026.

V. SUMMARY

We have studied parametric decays of a circularly po
ized wave in an electron-positron plasma, propagating in
direction of an external magnetic field. In general, there e
several instabilities, both resonant and nonresonant.
resonant instabilities are decay instabilities in which t
pump wave decays into a forward-propagating electroaco
tic wave and a sideband wave. The nonresonant instabil
are essentially electromagnetic, in which the pump wave
cays into two sideband waves. Depending on the sound
locity and on the ratiovp /vc , there are two types of modu
lational instabilities. For vs /c!1, the modulational
instability is nonresonant and gives rise to two sideba
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daughter waves. For larger values ofvp /vc , and if vs /c is
high enough, like, for example, the case of Fig. 4~a!, the
modulational instability is resonant and involves a forwa
propagating electroacoustic wave and a sideband wave.

The system is more sensitive to the pump wave amplit
for vp /vc@1. As this ratio decreases, larger and larger a
plitudes are needed in order to destabilize the system.

The particular case of pulsars magnetospheres co
sponds to a situation in whichvp /vc!1, because of the
existence of very strong magnetic fields. This case has b
analyzed in Figs. 8~a!–8~d!. In general, the type of instabili
ties involved are the same as in the other cases, except
instability ranges are smaller and larger pump wave am
tudes are needed to trigger the instabilities.

Notice that we have considered very small values ofvs /c
e
-

e-

en

hat
i-

because the treatment is valid only for nonrelativistic te
peratures.

It is important to point out that, since our model is a flu
model, there are important effects, such as Landau dam
and resonance absorption, that have not been consid
They can change the results and provide thresholds w
are not present in our model. Therefore, a similar approac
the one used here, but using kinetic theory, is required.
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APPENDIX

Definitions for dispersion relation~32! are as follows:
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I 2
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