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Parametric decays of a circularly polarized electromagnetic wave
in an electron-positron magnetized plasma
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We study the parametric decays of an electromagnetic wave propagating along an external magnetic field in
an electron-positron plasma. We include weakly relativistic effects on the particle motions in the wave field
and the nonlinear ponderomotive force. We show that there are a number of resonant and nonresonant wave
couplings. These include ordinary decay instabilities, in which the pump wave decays into an electroacoustic
mode and a sideband wave. There are also nonresonant couplings involving two sideband waves and a
nonresonant modulational instability in which the pump wave decays into two sideband modes. Depending on
the parameters involved, there is a resonant modulational instability involving a forward-propagating electroa-
coustic mode and a sideband daughter wg84063-651X98)04101-4

PACS numbd(s): 82.40.Ra, 51.66:a

I. INTRODUCTION Here we study the general structure of parametric insta-
bilities of a large amplitude electromagnetic wave propagat-
The nonlinear behavior of an electromagnetic waveing along an external magnetic field. We include weakly
propagating along an external magnetic field in an electronrelativistic effects on the particle motions in the wave field,
positron plasma has been studied by several auttsms, the ponderomotive force, and nonrelativistic thermal effects.
e.g.,[1]). However, most of the effort has been devoted toNote that in the case of a circularly polarized wave, which is
the study of the possible self-modulation of the waves. Thehe case in a magnetized plasma, there is no harmonic gen-
reason lies in the observational fact that radiation emittecration[7,11].
from pulsar magnetospheres shows short intensity variations Thus, in Sec. Il, we describe the model. In Sec. Ill, we
[2—-5]. To account for these micropulses, Chian and Kennetlerive the nonlinear dispersion relation. In Sec. IV, we study
[6] proposed a self-modulational instability of the electro-numerically the dispersion relation. In Sec. V, the results are
magnetic waves. To this end, these authors considered a nosummarized and discussed.
linear Schrdinger equation whose coefficients were shown
to be incorrect[7]. The reason for this is that Chian and Il. MODEL
Kennel [6] omitted two sources for nonlinearity, namely, ) _ )
harmonic generation and the ponderomotive effects. Kates We assume that the electron-positron plasma is described
and Kaup[7], by using a multiple time-space scale perturba-PY the following set of equations:
tion theory, solved the problem consistently. They showed an
that in a nonmagnetized electron-positron cold plasma, the o
system is modulationally stable for both linear and circular at
polarization. When thermal effects are included, the system
bec_omes modulationally unstable in a very narrow freqygnt_:y i +17| ) ﬁ) (F|l;|) _9 ( E+ E 5| % g) —~—Vn,,
region. It has been recently shown that in the ultrarelativistic at m c
case the wave can be self-modulated due to relativistic tem- (2
peratures and phonon dampifgj. . .
Parametric decay of an electromagnetic wave propagating V-E=4mp, €)
in an unmagnetized plasma has been studied by Gangadhara .
et al. [9]. There, the authors studied only the modulational s s 1B
- s : VXE=———, (4)
instability. However, it was recently shown that the treat- c ot
ment of Ref.[9] has several deficiencies. A full study of
parametric decays of linearly polarized waves in an electron- . . 4w . 19E
positron plasma is given in Ref10]. VXB=-—J+ - —, 5)
In the case when the plasma is strongly magnetized, Kates
and Kaup[11] showed that the plasma is unstable for fre- ) R
quencies below,/2, Wherew§:47-rnoe2/m is the electron J=E qny, (6)
(positron plasma frequency. Note that the actual plasma fre- !
guency of the system ig2 times the electron plasma fre-
quency. Recently, fully relativistic thermal effects have been p=> qn, (7)
considered, and it has been shown that, in the ultrarelativistic !
limit, the system is modulationally unstable fer< \/;wp,
where 7 is the ratio between the rest energy density and the
enthalpy of the systeri 2].

—ﬁ-(n.&.), (1)

52 —-1/2
|
I=|1- EZ) : (8)
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wheren, is the density of each quidL is the bulk velocity 3 ; i . .
of each fluid,E and B are the electric and magnetic fields, (a)
respectivelyK is the Boltzmann constani, is the total cur- 7k 4

rent, v is the adiabatic coefficient, is the common tempera-
ture, m is the particle mass, antlis the speed of light.

We assume that a circularly polarized electromagnetic
pump wave propagates along thexis, as well as the exis-
tence of a constant magnetic field in the same direction, sc> 0f 1
that the total zeroth-order electric and magnetic fields are

given by -1k i
éOZB[S\( COE(kOZ—th)+§/ Sin(koz_(uot)]'f'BOZ’i, (9) 2
Eo=E[X sin(koz— wot) —y cogkez— wot)],  (10)
__3 1 f 1 1
c -3 -2 -1 0 1 2 3
B= —ko E. 11 x
Wo
Adopting the notation for transverse magnitudes 3
AL o=AgtiAgy=Ae oz @) A real, (12 (b)
we find that this wave induces a particle transversal velocity 2r i
given by
qB o? ‘ r i
-y _ 3
v +mck0”(1 5 7;), (13
~ O} J
a= Ll B (14
mk, -t -
__ o -2 1
n= wo— W ’ (15) )
qB =33 2 1 0 1 2 3
a)czm—c. (16) X

In order to obtain the zeroth-order approximation, we FIG. 1. Dispersion relation of the pump wave, E7). Nor-
have assumed that there is an electromagnetic wave of tHBalized wave numbery=Koc/w. vs normalized frequency
form exdi(kez—wgt)]. Then the dispersion relation of the =®o/@c for @p/w:=0.5.(8) a=0.01.(b) @=0.05.
electromagnetic wave, including weakly relativistic effects,
is given by of the magnetic field. These waves are supported by the elec-
2 trons and the branch has a resonance at the electron gyrofre-
1— o ,73), 17) quency. The fourth quadrant corresponds to left-hand polar-
2 Y ized waves, moving in the opposite direction to the external

wSZCzkg—F wgg 7j
magnetic field and supported by the positrons.

where w,, is the electron plasma frequendys-e for elec- As the pump wave intensity increases, there is an insta-

trons andj =p for positrons. . . . bility for frequencies starting at a cutoff frequeney> w,
Note that the small parameter ds So sincev is propor- andk,=0. This is illustrated in Fig. (b) for &=0.05.

tional to « [see definition(13)], the theory is weakly relativ- " Assuming that the system consists now of electrons, pos-
istic and the factol” can be expanded around. itrons, and a circularly polarized electromagnetic wave satis-
In Fig. 1(a), we show the dispersion relation of the pump fying Eq. (17—the pump wave—we perturb the system

wave including weakly relativistic effects on the particle mo- adain with a perturbation of the form ditkz— wt)1. We find
tion in the wave field of the pump, E¢L7). We have chosen thge set of quations ez wh] I

wplw:=0.5 anda=0.01. The first quadrant corresponds to

right-hand polarized waves propagating in the direction of

the external magnetic field. The right-hand polarized waves

are supported by the positrons and have a resonance at the at
positron gyrofrequencyw,= w.. The second quadrant cor-

responds to right-hand polarized waves moving in the oppo-

site direction of the external magnetic field. These waves are
supported by the electrons and have a resonance at the elec-

tron gyrofrequencywo=—w.. The third quadrant corre- _9
sponds to left-hand polarized waves, moving in the direction m

* 2

UViolio Vio

ov,| 1+ —— vt —
1 C2 s 202

1v,0v70
ULO<1+§ C2

J
+5sz

[
OB, + ¢ (50281_0_501_802)}1 (18)
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FIG. 2. Nonlinear dispersion relation, E2). Normalized wave numbey=kc/w. vs frequencyx=w/w. for w,/w.=1 andvg/c
=0.1.(a) «=0. (b) «=0.1.(c) «=0.2.(d) a=0.2, showing the details of the coupling,(,D_).

92 1v,v% 92 respectively, withk. =ky*k and w. = wy* w. From Fara-
2 32 —vg 7 ov, day’s law(4) and the continuity equatiofl), it follows that
. w- b (24)
q d 11 .=~ —r—,
Zaﬁ[éEz'FEE(ﬁUIBLO—&)LBIO ¢ ks
~ kv
n=ng —. (25
+UIO(SBL_UL0681) y (19) w

From the condition of charge quasineutrality,

J sn,=5
o7 OE,=4me(dn,— one), (20 Np=oNg,
and Eq.(25) it follows that
19 & 4me ~ ~ o8
a2 72 BTl o gz [Me(dvpL — dver) Up=Ue. (26)
Using EQgs.(12) (13), and (22)—(26), in Egs. (18)—(21),
Longitudinal and transversal perturbations are of the form by 5 1.,,
[0+ (1+a®7") —wcJv, +| ot 5 a7 vt
SA,= R Ae'kz= V)] (22)
_|taBe. [ 1 23>~:i b.
and 2mcawg 27" T me k.

SA, =a e'kizmeil g gllk-zm0 ) (23) (27)
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FIG. 3. Nonlinear dispersion relation, E@2). Normalized wave numbey=Kkc/w, vs frequencyx= o/ . for w,/w.=10 andvg/c
=0.01.(a) «=0. (b) =0.01.(c) «=0.02.(d) Enlargement of the origin for=0.03.

(c?k? — w?)b* = —47-rcelcno(v§_—v§_

w5 v o (1+a?9?) — wJv*
1kv 1
1 9B w, 1, .\~ a b* +——paC77(1——a2773)
| z2=—c S = — 2 P 2 P
2 mc wg (1 297 T me Y ke (28) @
1 +7 1—£a2773” . (31
—w? l+§a2772 +v§k2flj ¢ 2 ¢
q q 1 Ill. NONLINEAR DISPERSION RELATION
=—w B(v+—v*)+—77(l——a2773> o -
mc mck 2 Upon elimination of all quantitiesu(v . ,b.) from Egs.
(27)—(31), we obtain the following nonlinear dispersion re-
X (b* —b,)|, (29) lation:
1 k~ 0:F1+F2__F2+Fl_, (32)
v
(c?k2 —w?)b, = —47rcek+no{vp+—ve++ > Tp whereF,. andF,. are defined in the Appendix.
Whena=0, Eq.(32) reduces to
1
X ac np(l—z azng) 0-5,SD.D_, @3
1 where
2.3

T l-5a ﬂe)”, (30) Sp=Se= w2 02K2, (34)




998 V. MUNOZ AND L. GOMBEROFF 57

6.0
5.9
5.8
) 5.7
5.6
> >~ 55
5.4
1 5.3
5.2
5.1
5.0 1 1. 1 1
2 0.29 0.30 0.3 0.32 0.33 0.34
b3 x
0'7 T T T T T
0.6
0.5
0.4
- >
0.3
0.2
0.1
1 ©
5.0 L 1 1 1 0.0 ] 1 1 1
0.29 0.30 0.31 0.32 0.33 0.34 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
M x
0.7 T T T T T
0.6 -
05F g
0.4 E
>
0.3 F E
0.2 1
0.1 4
(e)
0.0

1 -l 1 1
-0.03 =-0.02 ~-0.01 0.00 0.01 0.02 0.03
X

FIG. 4. Same as Fig. 3, fan,/w.=10 andvs/c=0.057.(a) «=0. (b) The crossing §, ,e_) for «=0. (c) The same crossing faz
=0.001.(d) Enlargement of the origin for=0. (¢) Same agd) for «=0.01.

©. tively. There are four electroacoustic modes, two propagat-
D.=c% ~ 0 + o) o ot o —a ) 39 ingin the direction of the electromagnetic wave and the
= ke e other in the opposite direction. When# 0, the modes are
The solutionsD . =0 andS,=S,=0 correspond to the elec- coupled. A necessary condition for wave coupling is that the

tromagnetic waves and the electroacoustic modes, respegssonance conditions must be satisfied, namelyy=w,
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FIG. 5. Same as Fig. 4, showing in details the crossings involping () «=0. (b) «=0.005.(c) «=0.01.

+w, with n=1,2,3 ..., wherew; and w, are the frequen- =0.9574. Itis enough to consider the upper half of thg/]
cies of the daughter wavé43]. plane, since the lower half plane is symmetric to reflections
For the case of an unmagnetized plasfBg,=0, »=1, through the origin. There are eight lines in the figure corre-
w:=0), Eq. (32 reduces to sponding to the eight real solutions Bf. =0. Four of these
lines are parabolic and exhibit no resonance. They are la-
S[D.D_—(D,+D_)w,a?]=—w;a?c’k*(1-a?) beled asD-. in Fig. 2@). The linesp. also correspond to
X(D,+D_), (36) solutions ofD.., but they resonate at the proton gyrofre-

quency w+=w.; Similarly, e~ is the branch ofD.=0

which corresponds to the dispersion relation of circularly po-WhICh resonates at the electron gyrofrequency=— w..

larized electromagnetic waves in an unmagnetized electronl-"€re are also four other lines corresponding to the electro-
positron plasm414]. acoustic modes present in the system. These are straight lines

In the next section we solve numerically the nonlinearPassing through the origin and symmetric with respect to the
dispersion relation for various regions in parameter space by axis [see Eq.(A15) in the Appendi}. In the case when

using a method first derived by Longtin and Sonnefl5] ~ @=0 there are only two such lines because we have assumed
(see alsd16-19). equal electron and positron temperatures. However, in the

presence of the pump wave, the acoustic modes associated
with the electrons and protons separate from each other, giv-
ing rise to four lines, two corresponding to acoustic modes
propagating in the direction of the pump waje Fig. 2@

We now solve EQq.(32) numerically. To this end, we they are labeled b, and they overlapand the other two
choose a value of the pump wave frequeney=0.5, and propagating in the opposite directidlabeled byS_). From
from Eq. (17) we determine the corresponding wave numberfFig. 2@), it follows that there are a number of crossings
yo for @=0. In Fig. 4a), we show the solutions of E¢32) between the solutions of E¢32). Some of these crossings
for w,/wc=1, vs/c=0.1, anda=0. With these valuesy,  can give rise to wave coupling when the pump wave is

IV. NUMERICAL ANALYSIS OF THE DISPERSION
RELATION
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FIG. 6. Same as Fig.(8). (a) vs/c=0.025 anda=0. (b) Same aga), «=0.01.(c) vs/c=0.03 anda=0. (d) Same a<c), but for «
=0.01.(e) Same agd), but forvy/c=0.037.(f) Same add), but forv,/c=0.038.

switched on. Only crossings between modes satisfying en:S, ,e_), but they do not give rise to wave coupling. In Fig.
ergy conservation can lead to wave coupling. This is a nec2(b), we have switched on the pump wave by settimg
essary but not a sufficient condition. The crossings leading te=0.1. We see that some crossings are now gaps. This means
wave couplings are labeled froff) to (5) in Fig. 2@). Fig-  that at these crossings we have instabilities, indicating,
ure 2a) does not show all the crossings in the upper half ofthereby, wave coupling. From Fig(18, it follows that there

the (x,y) plane. There are two additional crossings, aboveare several possible couplings. Starting from the top, there is
the displayed portion of the figure, betweeB (,e,) and one corresponding to the crossing of an electroacoustic mode
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propagating forward$%,) and the solution oD _ =0, which 20 . . .

has a resonance at_=w.(p_). We see that the two elec- sl |
troacoustic modes not only separate from each other whei o+ o- P+ &~

a#0, but also only one of them couplespa . This behav- 16 1
ior will be found again later. The crossing with the electroa- 14} S- i
coustic mode gives rise to an ordinary decay instability, in 12l (3 S+ |
which the pump wave decays into a forward-propagating (2) i
electroacoustic mode of frequeneyand a sideband wave of > 10¢r .
frequencyw _ . The crossing betweermp( ,p_) is a nonreso- 8l ]
nant coupling in which the pump wave decays into two side-

band wave$20]. There is then another nonresonant coupling 6T ]
between two solutions dd =0 (e_,p_), which is more 4r 1
clearly seen in Fig. @) when a=0.2. Finally, in Fig. Zb) 2t .
there is a crossing at the origin betweep, (e_). This (1) (0)
crossing gives rise to a gap starting at the origin and corre- 03 -1 0 1 2
sponds to a nonresonant modulational instability. Figudg 2 x

shows the only other coupling for this set of parameters, at
the crossing €, ,D_).

In Fig. 3@ we study the case whe#,/w.=10, a=0,
andv¢/c=0.01. The parabolic branch&. are more sepa-
rated from each other than they are &gy=1, and, therefore,
the crossings betweene(,D_) have disappeared. The
crossing betweenO, ,D_), shown in Fig. 2a), is still
present, but as in the previous case, it does not lead to coL
pling. Therefore, the line® .. are irrelevant, and we concen-
trate on the other six lines, as shown in Fige)3The cross-
ings that lead to wave coupling are labeled frén to (4);
they are the same as in the previous dasg=1, Fig. 2a)].

In Fig. 3b), the pump wave has been increased do
=0.01. One of the sounds propagating forward has couplec
to p_ to give rise to a decay process. This is an ordinary
decay instability where the pump wave decays into a
forward-propagating sound and a sideband wave. This corre
sponds to the first gap from the top. There is another gap
between p, ,p_). This is a nonresonant coupling in which
the pump wave decays into two sideband waves. There is FIG. 7. Same as Fig. 3, but fes,/w.=10 andvs/c=0.1.(a)
another gap at the origin betweep,(,e_). This coupling a=0.(b) «=0.08.

corresponds to a modulational nonresonant instability. Mov-

ing to the right, there is another nonresonant instability, indor for other sets of parameters: Whegis so low thatS,
volving (e_,p_) [see Fig. &)]. In Fig. 3d) we have am- is to the left ofp, ande_, the modulational instability is
plified the origin in order to show the modulational nonresonant; whens is so high that, is to the right ofp,
instability. Figures &) and 3c) are equivalent to Figs.(B) and e_, the modulational instability is resonant. Next, in
and 4c), but w, has been increased by one order of magni-Figs. %a)-5(c), we show the other two possible gaps, be-
tude anda has been decreased by one order of magnitudéween . ,p_) and (e_,p-). Figure a) shows the rel-
Thus we observe that lower values ®fire needed to desta- evant zone fora=0. In Fig. §b), «=0.005, and the gap
bilize the system for higher values af, . between €é_,p_) has developed, while the crossing

Next, we increase the sound velocityitg/c=0.057. For (S, ,p-) does not develop a gap. In Figich «=0.01 and
zero pump wave amplitude, the solutions of E82) are the gap p. ,p_) is now also visible.
shown in Fig. 4a). The crossings &. ,p;) and (S_,p_) Figures ©a)—6(f) detail the evolution of the crossing
have disappeared, and a new crossiBg (_) is present. (S;,p-). We have already shown in Fig(t8 that it leads to
There are five couplings in this case, as indicated in theoupling between one electroacoustic mode pnd when
figure.[Actually, the crossing %, ,p_) will not lead to cou- vs/c=0.01. In Fig. &a), vs has been increased, but the
pling unlessv is slightly less; we shall examine this lafer. crossing 6, ,p_) is still to the left of the crossingn(; ,p-).

In Figs. 4b) («=0) and 4c) («=0.001), we see the cross- Whena#0, Fig. 6b), a gap still develops, but how the two
ing and then the coupling betweeS.(,e_), respectively. electroacoustic modes are involved. In Fi(c)6uv is further
As in all previous decay processes, only one of the electroancreased and the crossing.(,p_) is to the right of the
coustic modes participates in the coupling. In Figgl)4nd  crossing 0 ,p-). Whena=0.01, Fig. &d), a gap develops
4(e) we show the crossing and the gap at the origin, respeawith both electroacoustic modes involved. Finally, Fig®)6
tively. Now S, is the rightmost line in the figure and the and &f) show this gap just before closing{/c=0.037) and
modulational instability is resonant, involving an electro-immediately after closingys/c=0.038). It remains closed
acoustic mode and_ . We have observed this same behav-for higher values ots. The crossing §. ,p_) has always
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FIG. 8. Same as Fig. 3, fab,/w.=0.1 andvs/c=0.1.(a) a=0. (b) «=0.2.(c) «=0.3.(d) Enlargement of the regior=0.5 andy
=0.5 of (¢).

shown a similar behavior for the various sets of parametertow enough. This is the case fav,/w.=1 and w,/w,

we analyzed. The transition between a gap and an avoiding 10, where it develops a gap far;/c<0.48 andv/c
crossing always occurs when this crossing is in between thes0.42, respectively.

crossings p. ,p_) and _,p_). We point out that we have also examined the intermediate

Now we increase the sound velocitydg/c=0.1. Figure  casesw,/w.=2 and w,/w =0.5. In the first casev,/w,

7(a) corresponds toe=0. We notice that the crossings =2, the threshold occurs far,/c=0.47, and in the second
(S;,e-) no longer exist and only three couplings are pos-case w,/w=0.5, it occurs forvs/c=0.53. However, for
sible. These are shown in Fig(bf for «=0.08. From Fig. w,/w.=0.1, there is never a gap at this crossing, even for
7(b) it follows that there are two nonresonant couplingsv/c values as small as 16.

(p+,p-) and (e_,p_) and a resonant modulational instabil-
ity between G, ,e_) at the origin.

In Fig. 8@ we have reduced the plasma frequency to
wp/w=0.1. The other parameters atg/c=0.1 and @ We have studied parametric decays of a circularly polar-
=0. When w, decreases, the parabolic branchi#gs get ized wave in an electron-positron plasma, propagating in the
closer, and therefore the crossings are the same as in Fidirection of an external magnetic field. In general, there exist
2(a), plus a new crossing, betweed ( ,p_). In Fig. 8a) we  several instabilities, both resonant and nonresonant. The
have selected a region where all the crossings leading tesonant instabilities are decay instabilities in which the
wave coupling are present. The couplings are those expectegimp wave decays into a forward-propagating electroacous-
namely, an ordinary decay instability betwee8,(p_), tic wave and a sideband wave. The nonresonant instabilities
Fig. 8b), a nonresonant modulational instability involving are essentially electromagnetic, in which the pump wave de-
(e_,p+), Fig. 8c), and a nonresonant coupling betweencays into two sideband waves. Depending on the sound ve-
(e_,p-), Fig. 8d). The only new feature is the absence of alocity and on the ratiav,/w., there are two types of modu-
gap at the crossingp(, ,p_). For all the values oftw, we lational instabilities. For vs/c<1, the modulational
have studied, this crossing always leads to a coupling i§  instability is nonresonant and gives rise to two sideband

V. SUMMARY
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daughter waves. For larger valueswf/w., and ifvs/c is
high enough, like, for example, the case of Figa)4the
modulational instability is resonant and involves a forward
propagating electroacoustic wave and a sideband wave.

plitudes are needed in order to destabilize the system.

PARAMETRIC DECAYS OF A CIRCULARLY POLARIZED . ..

1003

because the treatment is valid only for nonrelativistic tem-

peratures.

The particular case of pulsars magnetospheres corrghe one used here, but using kinetic theory, is required.
sponds to a situation in whicw,/w <1, because of the

existence of very strong magnetic fields. This case has been

analyzed in Figs. @—-8(d). In general, the type of instabili-
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APPENDIX

Definitions for dispersion relatio(82) are as follows:

H ++ He++ 1 Hp0+
Fro=lo+li| =% +5 15— (A1)
Dp De 2 Dp
1 (Hpio Hero) 1 Hyoo
F1_=——I1( P 4 -=1, , (A2)
2 Dp De 2 Dy
1 H -+ He—+ 1 Hp0+
F, ___Il( P+ 51 , (A3)
+=721 0, "p. )" 277D,
Hp-— He -} 1 Hpoo
Foo=l_+1y ——+ )——|2 : (A4)
D, D¢ 2 D,
l.=c%k2 - w2, (A5)
l,=w), (AB)
2 o[ _€B ? 1,3 1,3
l,=wpkkoC mckg Mp 1—§a Mp| T e l—za el |, (A7)
2.2 2,2 1 5 o2 @c 1,3 1, 2.2
D=lw,(1+a"p°)—w:]]i —[wo_(1+a°y )—wC]S-i-Ea C koww— 7 1—§a 7| Te- g a%y —Sw,a’ny
0
2212  Yc _Eza 1222& _523 }22_ 2 2
+aCkOww07]1 5 a7 +2aCk0ww0771 5@ |0y 5 aty w_(1+a°n°)+w|, (A8)
1 1) 1 1 w
_ _ 2 2\ = 2.22  Yc _ > 2.3 o 2 Ye 22
H,. w+[ Jo_(1+a“%9) wc]+2 a“ckyw o0 7;(1 5 a7 +2 a‘w o kok,cony
1 2
X 1—§a2773 w+§a27]2—w_(1+a27]2)+wc, (A9)
2.2 2~2,2,. 2c 2.3 2.2 “We 5 1232
Hi_=w_| ~w;a“p°Stackijow — n|1— 5 a“n° | |t a“Ckok_w — 5| 1— 5 a“y
(O] 2 (O] 2
1
X w+§a2772—w_(1+a27]2)+wc (A10)

It is important to point out that, since our model is a fluid
model, there are important effects, such as Landau damping

The system is more sensitive to the pump wave amplitudend resonance absorption, that have not been considered.
for w,/wc>1. As this ratio decreases, larger and larger am-They can change the results and provide thresholds which
are not present in our model. Therefore, a similar approach to

This paper was partially supported by FONDECYT,
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o) 1
H o =w, —w,aznzs—azczkgw—c 71— a?9®
wqo 2

1) 1 2
+ a?c?kok s 0 — 772(1— = azns) —w_ = d®P’to,(1+a’p?)—w.l, (A11)
wqo 2 2
1 o) 1
H.o _=w_ {—Yo,(1+a?p)—w]— = azczkga) —= |l 1— = a?9®
2 wqo 2
1 ® 1 2 1
+ > o — kokcznz(l— > a2773) -5 2+ o (1+a?9?) — v, (A12)
@o
1 k 1
Hor=o.| o_ = a®p?+w_(1+a?7?) — o, -= 71— 5 o?9®
2 Ko 2
1 2
X[w+ﬂﬁ1ﬂﬂ§—wdhv(Lﬂfﬁa—wd—ww4§%ﬂﬁ%}, (A13)
1 k_ 1
Hoo=o_| 0, 5 a®p’+ o, (1+a’p?)—w.|—— 9| 1— 5 a?9°
2 Ko 2
1 2
X [w+(1+a27/2)—wc][w(1+a2n2)—wc]—ww+(§a2n2) } (A14)
2 1 2,2
S=w 1+§ a | —veke. (A15)
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